The production of glycerol carbonate is an integrated process that uses only CO2 and glycerol as main raw materials since both ammonia and methanol are internally recycled. It consists of three stages, Urea, DMC and final GC production...
Artikel
Leveraging Direct Pyrolysis for the Synthesis of 10 nm Monodispersed Fe3O4/Fe3C NPS@Carbon to Improve Supercapacitance in Acidic Electrolyte
Von Wiley-VCH zur Verfügung gestellt
The prevailing practice advocates pre-oxidation of electrospun Fe-salt/polymer nanofibers (Fe-salt/polymer Nf) before pyrolysis as advantageous in the production of high-performance FeOx@carbon nanofibers supercapacitors (FeOx@C). However, our study systematically challenges this notion by demonstrating that pre-oxidation facilitates the formation of polydispersed and large FeOx nanoparticles (FeOx@CI-DA) through "external" Fe3+ Kirkendall diffusion from carbon, resulting in subpar electrochemical properties. To address this, direct pyrolysis of Fe-salt/polymer Nf is proposed, promoting "internal" Fe3+ Kirkendall diffusion within carbon and providing substantial physical confinement, leading to the formation of monodispersed and small FeOx nanoparticles (FeOx@CDA). In 1 M H2SO4, FeOx@CDA demonstrates ~2.60x and 1.26x faster SO42- diffusivity, and electron transfer kinetics, respectively, compared to FeOx@CI-DA, with a correspondingly ~1.50x greater effective surface area. Consequently, FeOx@CDA exhibits a specific capacity of 161.92 mAhg-1, ~2x higher than FeOx@CI-DA, with a rate capability ~19% greater. Moreover, FeOx@CDA retains 94% of its capacitance after 5000 GCD cycles, delivering an energy density of 26.68 Whkg-1 in a FeOx@CDA//FeOx@CDA device, rivaling state-of-the-art FeOx/carbon electrodes in less Fe-corrosive electrolytes. However, it is worth noting that the effectiveness of direct pyrolysis is contingent upon hydrated Fe-salt. These findings reveal a straightforward approach to enhancing the supercapacitance of FeOx@C materials.
Zum VolltextÜberprüfung Ihres Anmeldestatus ...
Wenn Sie ein registrierter Benutzer sind, zeigen wir in Kürze den vollständigen Artikel.