Gesellschaft Deutscher Chemiker
Keine Benachrichtigungen
Sie haben noch keine Lesezeichen


A Magnetically Separable Fe3O4@EDTA‐gC3N4 Versatile Mesoporous Photocatalyst for CO2 Reduction and Water Splitting into Solar Fuels

Von Wiley-VCH zur Verfügung gestellt

In pole position: A magnetically separable Fe3O4@EDTA-g-C3N4 photocatalyst was synthesized for CO2 reduction and water splitting. Ethylenediaminetetraacetic acid (EDTA) played a crucial role in linking Fe3O4 and g-CN together and in enhancing the charge transfer between them by reducing the band gap from 2.23 to 0.67 eV. This resulted in a higher methanol (375.56 μmol g−1 cat) and hydrogen (59.49 μmol hg−1 cat) yield with appreciable recyclability and stability of the photocatalyst.


This study discusses CO2 valorization and water splitting via photocatalysis using non-noble metal magnetically separable Fe-supported EDTA-g-C3N4. A mesoporous and magnetically separable Fe3O4@EDTA-g-C3N4 (F-E-g-CN ) hybrid photocatalyst was synthesized for the first time with abundant catalytic sites. Ethylenediaminetetraacetic acid (EDTA) played crucial roles in the heterostructured catalysts, such as linking Fe3O4 and g-CN together and enhancing charge transfer facilitating a reduced band gap from 2.23 to 0.67 eV in F-E-g-CN (1 : 1). The results indicate a promising yield of methanol (375.56 μmol g−1 cat), formic acid (18.70 μmol g−1 cat), and hydrogen (59.49 μmol hg−1 cat) under the optimized reaction conditions. The catalyst revealed an increase in photoactivity for CO2 conversion and water splitting by factor of 12.38 and 12.05 for methanol and 100-fold higher for hydrogen production than the pure g-CN and E-g-CN, respectively. An isotopic tracer experiment was carried out using 13CO2, confirming the carbon source of methanol. This research will offer additional in-depth insights into the design of photocatalytic CO2 reduction and water-splitting reactions based on g-CN.

Zum Volltext

Überprüfung Ihres Anmeldestatus ...

Wenn Sie ein registrierter Benutzer sind, zeigen wir in Kürze den vollständigen Artikel.