Photonic crystals (PCs) can adjust the propagation and distribution of photons because of their unique periodic structures, which offers a compelling platform for photon management. The periodicity of materials with an alternating refractive index...
Artikel
Ultrasound–Driven Deposition of Au and Ag Nanoparticles on Citrus Pectin: Preparation and Characterisation of Antimicrobial Composites
Von Wiley-VCH zur Verfügung gestellt
This study aims to exploiting acoustic cavitation (US) to develop an oxytetracycline based antibacterial nanocomposites coupled with Au or Ag metal nanoparticle (NP) using pectin as carrier. UV-Vis spectroscopy and FESEM revealed that US strongly improved the metal NP dispersion. The US synthesized materials exhibited significant antimicrobial activity against gram (+) and gram (−), as evidenced by zone of inhibition tests.
Abstract
Pectin is a renewable, non–toxic and biodegradable polymer made of galacturonic acid units. Its polar groups make it suitable for complexing and supporting metallic nanoparticles (NPs). This work aimed to produce antibacterial nanocomposites using pectin and acoustic cavitation. The metal NPs (Au or Ag) were deposited using ultrasound (US, 21 kHz, 50 W) and compared with those achieved with mechanical stirring. The impact of the reducing agents (NaBH4, ascorbic acid) on the dispersion and morphology of the resulting NPs was also assessed. Characterization by diffuse reflectance (DR) UV-Vis-NIR spectroscopy and field emission scanning electron microscopy (FESEM) showed that the use of US improves the dispersion and decreases the size of both Au and Ag NPs. Moreover, with Au NPs, avoiding external reductants led to smaller NPs and more uniform in size. The prepared NPs were functionalized with oxytetracycline in water and tested against Escherichia coli (gram negative) and Staphylococcus epidermidis (gram positive) via the Kirby–Bauer test. The results show a better antibacterial activity of the functionalized nanoparticles compared to antibiotic–free NPs and pure oxytetracycline, advising the potential of the nanoparticles as drug carriers. These findings underscore the significance of US-assisted synthesis, paving the way to new environmentally friendly antimicrobial materials.
Zum VolltextÜberprüfung Ihres Anmeldestatus ...
Wenn Sie ein registrierter Benutzer sind, zeigen wir in Kürze den vollständigen Artikel.