The nitrogen and sulfur co-doped graphene aerogel (SNGA) was synthesized by a one-pot hydrothermal route using graphene oxide as the starting material and thiourea as the S and N source. Benefiting from the synergistic effect of sulfur and...
Artikel
Introducing Photo‐Cross‐Linkable Functionalities on P(VDF‐co‐TrFE) Ferroelectric Copolymer
Von Wiley-VCH zur Verfügung gestellt
Ferroelectric polymers have emerged as crucial materials for the development of advanced organic electronic devices. Their recent high-end commercial applications as fingerprint sensors have only increased the amount of scientific interest around them. Despite an ever-larger body of studies focusing on optimizing the properties of ferroelectric polymers by physical means (e.g., annealing, stretching, blending or nano-structuring), post-polymerization chemical modification of such polymers has only recently become a field of active study with great promise in expanding the scope of those polymers. In this work, a solution-based post-polymerization modification method was developed for the safe and facile grafting of a plethora of functional groups to the backbone of commercially available Poly(vinylidene fluoride-co-trifluoroethylene P(VDF-co-TrFE) ferroelectric polymers. To showcase the versatility of this approach, photosensitive groups were grafted onto the polymeric backbone, enabling them to undergo photo-cross-linking. Finally, these modified polymers were used as functional negative photoresists in a photolithographic process, highlighting the potential of this method to integrate ferroelectric fluorinated electroactive polymers into standard electronic microfabrication production lines.
Zum VolltextÜberprüfung Ihres Anmeldestatus ...
Wenn Sie ein registrierter Benutzer sind, zeigen wir in Kürze den vollständigen Artikel.