Ni-modified molybdenum zirconia (Ni/MoO3/ZrO2) was developed as an effective oxygen storage material for chemical looping dry reforming of methane (CL–DRM) under isothermal reaction conditions of 650 °C, which was 100–200 °C...
Artikel
Interparticle Hydrogen Spillover in Enhanced Catalytic Reactions
Von Wiley-VCH zur Verfügung gestellt
We analyze examples of enhanced catalysis based on interparticle (reverse) hydrogen spillover. Simple physical mixtures of powdered catalysts containing metal catalysts of H2 dissociation/recombination and solid catalysts with active sites for substrate activation significantly enhance catalytic reactions, including aromatic hydrogenation, CO2 methanation, deoxydehydration of polyols, aromatization of lower paraffins, and direct coupling of benzene and alkanes.
Abstract
Interparticle hydrogen spillover is the phenomenon of H migration over different catalyst particles, which should be a physical mixture of at least two solid catalysts. In this review, we analyze examples of enhanced catalysis based on interparticle (reverse) hydrogen spillover. Simple physical mixtures of powdered catalysts containing metal catalysts of H2 dissociation/recombination and solid catalysts with active sites for substrate activation significantly enhance catalytic reactions. These reactions include aromatic hydrogenation, CO2 methanation, and the deoxydehydration of polyols, aromatization of lower paraffins, and direct coupling of benzene and alkanes. The acceleration effect and proposed reaction pathway of each example involving interparticle (reverse) hydrogen spillover are summarized. Simple reaction systems comprising physical mixtures of at least two powdery solid catalysts should enable unique catalysis in the future with the aid of interparticle (reverse) hydrogen spillover.
Zum VolltextÜberprüfung Ihres Anmeldestatus ...
Wenn Sie ein registrierter Benutzer sind, zeigen wir in Kürze den vollständigen Artikel.