Gesellschaft Deutscher Chemiker

Artikel

Dual‐Site Mg/Zn Substitution in Fe–Mn–Ni Layered Oxides: High‐Entropy Engineering for Stable Oxygen Redox and Enhanced Sodium‐Ion Storage

Von Wiley-VCH zur Verfügung gestellt

This study demonstrates a dual-site (Mg/Zn) substitution strategy integrated with high-entropy engineering to simultaneously mitigate structural instability and irreversible oxygen redox reactions in Fe–Mn–Ni layered oxide cathodes for sodium-ion batteries, thereby achieving concurrent improvements in capacity and cycling stability.


The development of high-performance O3-type cathode materials for sodium-ion batteries (SIBs) is hindered by structural instability and limited reversibility of oxygen redox reactions (ORR). Herein, a dual-substitution strategy is proposed to synergistically activate stable ORR and structural reinforcement in NaFe0.33Mn0.33Ni0.33O2 (FMN). Mg substitution induces anion redox activity, achieving a high initial capacity of 163.2 mAh g−1, while Zn substitution stabilizes the host structure, enabling 71.6% capacity retention after 100 cycles. By integrating these effects through high-entropy engineering, NaMg0.1Zn0.15Fe0.11Mn0.4Ni0.23O2 (MZFMN) is synthesized, which exhibits a balanced electrochemical performance, with a high initial discharge capacity of 154.5 mAh g−1 and superior cyclability of 78.0% retention after 100 cycles. Mechanistic studies reveal that Mg facilitates reversible ORR, Zn mitigates phase transitions via covalent Zn-O bonding, and the high-entropy configuration suppresses irreversible structural degradation. This work establishes a paradigm for designing multifunctional cathodes by combining cation substitution and entropy-driven stabilization, advancing SIBs toward practical energy storage applications.

Zum Volltext

Überprüfung Ihres Anmeldestatus ...

Wenn Sie ein registrierter Benutzer sind, zeigen wir in Kürze den vollständigen Artikel.