The neurotransmitter serotonin influences a wide range of behaviors and biological processes through a series of serotonin receptors and transporters. Recent photochemical tools have made it possible to follow this complicated web of interactions...
Artikel
Covalent Stabilization of Collagen Mimetic Triple Helices and Assemblies by Dopa Crosslinking
Von Wiley-VCH zur Verfügung gestellt
Creating thermally stable collagen mimetic peptides (CMPs) is a persistent challenge. Nature leverages covalent crosslinkings to stabilize collagen's triple helix and higher-order assemblies. Herein, we demonstrate that crosslinkings between levodopa (Dopa) and lysine can covalently stabilize the triple helix in collagen mimetic peptides. Since alkaline conditions catalyze the oxidation of the catechol on Dopa to a benzoquinone, while being in proximity to the nucleophilic lysine, we hypothesized that this reaction could be a facile method to covalently capture the supramolecular structure of CMPs by simply increasing the pH of the aqueous solvent with the addition of sodium hydroxide. This strategy covalently stabilizes CMP homotrimers and a de novo designed ABC-type heterotrimer demonstrating that the Lysine-Dopa covalent bond is best templated by a supramolecular, axial cation-π pairwise interaction. In nature, collagen can hierarchically assemble into fibers. This behavior can be mimicked with the self-assembly of CMPs, but the resulting nanofibers typically exhibit thermal stability below body temperature. In a final application, we demonstrate that Dopa-Lysine covalent capture also enhances the thermal stability of CMP nanofibers well above 37 °C. This biomimetic covalent capture strategy can stabilize a wide variety of CMP systems and potentially enable the biomedical application of these materials.
Zum VolltextÜberprüfung Ihres Anmeldestatus ...
Wenn Sie ein registrierter Benutzer sind, zeigen wir in Kürze den vollständigen Artikel.