Gesellschaft Deutscher Chemiker

Artikel

 Optimized Carbonization of Biomass‐Derived Carbon Anodes for Stable and Long‐Cycle Sodium‐Ion Battery Performance

ChemElectroChem, September 2025, DOI. Login für Volltextzugriff.

Von Wiley-VCH zur Verfügung gestellt

This study presents the synthesis of biomass-derived carbon-metal organic framework (C-MOF) using modified sawdust as a sustainable precursor and elucidates its electrochemical performance for anode material of sodium-ion batteries. C-MOF showed enhanced rate capability, durability, and effective sodium-ion kinetics.


This study presents the synthesis of biomass-derived carbon-metal organic framework (C-MOF) using modified sawdust as a sustainable precursor and elucidates its electrochemical performance as an anode material for sodium-ion batteries (SIBs). Optimization at a pyrolysis temperature of 1000 °C with 7.5% catalyst concentration, C-MOF achieves a high surface area of 312 m−2 g−1 and electrical conductivity of 28 S cm−1, contributing to its long cycling electrochemical performance compared to commercial hard carbon (HC). The C-MOF delivers a maximum discharge capacity of 348.5 mAh g−1 at 25 mA g−1 and exhibits an outstanding cycling stability over 600 cycles with minimal degradation. Electrochemical techniques (cyclic voltammetry, impedance, and galvanostatic charge–discharge) reveal efficient sodium-ion intercalation and favorable ion diffusion characteristics within the porous C-MOF structure. These findings position C-MOF as a promising, sustainable, and long-standing anode material for advanced SIB applications, offering enhanced rate capability, durability, and effective sodium-ion kinetics.

Zum Volltext

Überprüfung Ihres Anmeldestatus ...

Wenn Sie ein registrierter Benutzer sind, zeigen wir in Kürze den vollständigen Artikel.