Managing the Cu loading on the surface of CeO2 is an effective method to adjust the proportion of Cu+ to Cu0 active sites and the number of oxygen vacancies. The robust electron interaction within the Ce4+
Artikel
NiCo2O4/MXene Hybrid as an Efficient Bifunctional Electrocatalyst for Oxygen Evolution and Reduction Reaction
Von Wiley-VCH zur Verfügung gestellt
Unlocking the power of NiCo2O4/MXene nanowire: The NiCo2O4/MXene composite prepared through a hydrothermal method demonstrated a superior OER/ORR performance
Abstract
For the advancement of electrochemical energy conversion and storage technologies, bifunctional electrocatalysts are crucial for efficiently driving both the oxygen evolution (OER) and reduction reactions (ORR). Cobalt-based spinel oxides are a class of promising bifunctional electrocatalysts. However their low electrical conductivity and stability may hinder further improvement. A novel composite material composed of NiCo2O4 nanoparticles integrated with emerging two dimensional MXene nanosheets (NiCo2O4/MXene) was developed. The successful integration of NiCo2O4 with MXene brings about a number of attractive structural features. This includes synergistic effects between NiCo2O4 and MXene, highly accessible surface areas, complete exposure of numerous active sites, and excellent electronic conductivity, all of which collectively contribute to the desirability of composite material for OER and ORR. The synthesized NiCo2O4/MXene composite showed extraordinary OER electrocatalytic activity with a lower overpotential of 360 mV at a current density of 10 mA/cm2, and a small Tafel slope of 64 mV/dec compared to NiCo2O4, MXene and NiCo2O4+MXene (physically mixed). Additionally, NiCo2O4/MXene displays an ORR limiting current density of −4 mA/cm2 and exhibited highest onset potential and half wave potential of 0.92 V and 0.72 V vs. RHE, respectively, for the ORR in alkaline media compared to NiCo2O4, MXene and NiCo2O4+MXene (physically mixed).
Zum VolltextÜberprüfung Ihres Anmeldestatus ...
Wenn Sie ein registrierter Benutzer sind, zeigen wir in Kürze den vollständigen Artikel.