Gesellschaft Deutscher Chemiker

Artikel

MXene‐Derived g‐C3N5/TiO2/Ti3C2 Nanoheterostructure Activated by Peroxymonosulfate for Photocatalytic Tetracycline Degradation under Visible Light

ChemPhotoChem, September 2025, DOI. Login für Volltextzugriff.

Von Wiley-VCH zur Verfügung gestellt

Under visible light, a Z-type heterojunction is formed between Ti3C2/TiO2 and g-C3N5 to enhance charge separation. Electrons and holes directly or indirectly react with PMS to generate free radicals such as ·O2−$\text{O}_{2}^{-}$,·OH, and 1O2 to degrade tetracycline.


Photocatalysis-assisted peroxymonosulfate (PMS) activation is a promising technology for the degradation of antibiotics in water remediation. Herein, MXene-derived oxide (TiO2) and g-C3N5 Z-scheme ternary heterojunction photocatalytic composite materials are synthesized using an electrostatic self-assembly approach and characterized. The optimized g-C3N5/TiO2/Ti3C2 (CNTT) heterostructure demonstrates exceptional photocatalytic activity for tetracycline (TC) removal, achieving 90% degradation within 60 min at an optimal g-C3N5:TiO2/Ti3C2 mass ratio of 3:2. Remarkably, the system exhibits broad pH adaptability (80.8–96.3% TC removal across pH 2–12), overcoming the pH sensitivity limitations of traditional PMS-based processes. Mechanistic investigations reveal a synergistic photocatalysis-PMS activation pathway, with quenching experiments confirming SO4−$\text{SO}_{4}^{-}$, ·OH, ·O2−$\text{O}_{2}^{-}$, and 1O2, as dominant reactive species. The CNTT composite maintains 65.2% degradation efficiency after five cycles, demonstrating robust stability. Coexisting ions negatively influence TC removal in the order: H2PO4  > SO42−$\text{SO}_{4}^{2 -}$ > Cl > NO3−$\text{NO}_{3}^{-}$ > CO32−$\text{CO}_{3}^{2 -}$. This work establishes the CNTT heterostructure as a promising, environmentally tolerant candidate for efficient pharmaceutical pollutant remediation in complex aqueous matrices.

Zum Volltext

Überprüfung Ihres Anmeldestatus ...

Wenn Sie ein registrierter Benutzer sind, zeigen wir in Kürze den vollständigen Artikel.