Lanthanide complexes of DO3A-derivative ligands bearing a pyridine-carbamate or pyridine-amine pendant have potential interest in the design of enzymatically activated imaging probes. They are stable and inert, with an exceptionally high kinetic ...
Artikel
Mimicking the Reactivity of LPMOs with a Mononuclear Cu Complex
Von Wiley-VCH zur Verfügung gestellt
Lytic polysaccharide monoxygenase are Cu-dependent metalloenzymes that catalyze the hydroxylation of strong C−H bonds using O2 and/or H2O2 as oxidants. In this article, we analyze the oxidation chemistry of an unusual mononuclear Cu complex bound by a podal ligand that can act as a H-bond/proton donor. Our results suggest that LPMOs react with O2 to produce H2O2 (oxidase-like chemistry), which is used to promote C−H hydroxylation via a Fenton-like mechanism.
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are Cu-dependent metalloenzymes that catalyze the hydroxylation of strong C−H bonds in polysaccharides using O2 or H2O2 as oxidants (monooxygenase/peroxygenase). In the absence of C−H substrate, LPMOs reduce O2 to H2O2 (oxidase) and H2O2 to H2O (peroxidase) using proton/electron donors. This rich oxidative reactivity is promoted by a mononuclear Cu center in which some of the amino acid residues surrounding the metal might accept and donate protons and/or electrons during O2 and H2O2 reduction. Herein, we utilize a podal ligand containing H-bond/proton donors (LH2) to analyze the reactivity of mononuclear Cu species towards O2 and H2O2. [(LH2)CuI]1+ (1), [(LH2)CuII]2+ (2), [(LH−)CuII]1+ (3), [(LH2)CuII(OH)]1+ (4), and [(LH2)CuII(OOH)]1+ (5) were synthesized and characterized by structural and spectroscopic means. Complex 1 reacts with O2 to produce 5, which releases H2O2 to generate 3, suggesting that O2 is used by LPMOs to generate H2O2. The reaction of 1 with H2O2 produces 4 and hydroxyl radical, which reacts with C−H substrates in a Fenton-like fashion. Complex 3, which can generate 1 via a reversible protonation/reduction, binds H2O and H2O2 to produce 4 and 5, respectively, a mechanism that could be used by LPMOs to control oxidative reactivity.
Zum VolltextÜberprüfung Ihres Anmeldestatus ...
Wenn Sie ein registrierter Benutzer sind, zeigen wir in Kürze den vollständigen Artikel.