A hydrophobic 1,1’-binaphthyl-2,2’-diamine containing two amine groups was introduced to synthesize a probe bearing two imine bonds linked by two salicylaldehyde (SAs). The hydrophobicity of binaphthyl moiety and the unique clamp-like stru...

Artikel
Hydrophobization of a TIP60 Protein Nanocage for the Encapsulation of Hydrophobic Compounds
Von Wiley-VCH zur Verfügung gestellt
Encapsulation of hydrophobic molecules in protein-based nanocages is a promising approach for dispersing them in water. In this study, the interior surface of the artificial protein nanocage TIP60 is chemically modified with hydrophobic compounds. The typical photosensitizer ZnPC can be encapsulated in modified TIP60 through the hydrophobic interaction and dispersed in water, retaining photosensitizer capability.
Abstract
Encapsulation of hydrophobic molecules in protein-based nanocages is a promising approach for dispersing these molecules in water. Here, we report a chemical modification approach to produce a protein nanocage with a hydrophobic interior surface based on our previously developed nanocage, TIP60. The large pores of TIP60 act as tunnels for small molecules, allowing modification of the interior surface by hydrophobic compounds without nanocage disassembly. We used four different hydrophobic compounds for modification. The largest modification group tested, pyrene, resulted in a modified TIP60 that could encapsulate aromatic photosensitizer zinc phthalocyanine (ZnPC) more efficiently than the other modification compounds. The encapsulated ZnPC generated singlet oxygen upon light activation in the aqueous phase, whereas ZnPC alone formed inert aggregates under the same experimental conditions. Given that chemical modification allows a wider diversity of modifications than mutagenesis, this approach could be used to develop more suitable nanocages for encapsulating hydrophobic molecules of interest.
Zum VolltextÜberprüfung Ihres Anmeldestatus ...
Wenn Sie ein registrierter Benutzer sind, zeigen wir in Kürze den vollständigen Artikel.