Gesellschaft Deutscher Chemiker
Keine Benachrichtigungen
Sie haben noch keine Lesezeichen


Evolution of Stabilized 1T‐MoS2 by Atomic‐Interface Engineering of 2H‐MoS2/Fe−Nx towards Enhanced Sodium Ion Storage

These findings on the evolution of stabilized 1T-MoS2 will strengthen our comprehensive knowledge of electronic structure optimization strategy and pave the way for the design of other heterostructures materials for high-performance energy storage.


Metallic conductive 1T phase molybdenum sulfide (MoS2) has been identified as promising anode for sodium ion (Na+) batteries, but its metastable feature makes it difficult to obtain and its restacking during the charge/discharge processing result in part capacity reversibility. Herein, a synergetic effect of atomic-interface engineering is employed for constructing 2H-MoS2 layers assembled on single atomically dispersed Fe−N−C (SA Fe−N−C) anode material that boosts its reversible capacity. The work-function-driven-electron transfer occurs from SA Fe−N−C to 2H-MoS2 via the Fe−S bonds, which enhances the adsorption of Na+ by 2H-MoS2, and lays the foundation for the sodiation process. A phase transfer from 2H to 1T/2H MoS2 with the ferromagnetic spin-polarization of SA Fe−N−C occurs during the sodiation/desodiation process, which significantly enhances the Na+ storage kinetics, and thus the 1T/2H MoS2/SA Fe−N−C display a high electronic conductivity and a fast Na+ diffusion rate.

Zum Volltext

Überprüfung Ihres Anmeldestatus ...

Wenn Sie ein registrierter Benutzer sind, zeigen wir in Kürze den vollständigen Artikel.