Gesellschaft Deutscher Chemiker
Keine Benachrichtigungen
Sie haben noch keine Lesezeichen


Enhanced Pomegranate‐Structured SnO2 Electrocatalysts for the Electrochemical CO2 Reduction to Formate

Von Wiley-VCH zur Verfügung gestellt

Pomegranate-structured SnO2 and SnO2@C nanocomposite electrocatalysts, with a selectivity above 80 % for the electrochemical CO2 reduction towards formate, are used to highlight the promising possibilities of a particle confinement strategy to enhance electrocatalytic stability for future electrocatalyst design.


Although most state-of-the-art Sn-based electrocatalysts yield promising results in terms of selectivity and catalyst activity, their stability remains insufficient to date. Here, we demonstrate the successful application of the recently developed pomegranate-structured SnO2 (Pom. SnO2) and SnO2@C (Pom. SnO2@C) nanocomposite electrocatalysts for the efficient electrochemical conversion of CO2 to formate. With an initial selectivity of 83 and 86 % towards formate and an operating potential of −0.72 V and −0.64 V vs. RHE, respectively, these pomegranate SnO2 electrocatalysts are able to compete with most of the current state-of-the-art Sn-based electrocatalysts in terms of activity and selectivity. Given the importance of electrocatalyst stability, long-term experiments (24 h) were performed and a temporary loss in selectivity for the Pom. SnO2@C electrocatalyst was largely restored to its initial selectivity upon drying and exposure to air. Of all the used (24 h) electrocatalysts, the pomegranate SnO2@C had the highest selectivity over a time period of one hour, reaching an average recovered Faradaic efficiency (FE) of 85 %, while the commercial SnO2 and bare pomegranate SnO2 electrocatalysts reached an average of 79 and 80 % FE towards formate, respectively. Furthermore, the pomegranate structure of Pom. SnO2@C was largely preserved due to the presence of the heterogeneous carbon shell, which acts as a protective layer, physically inhibiting particle segregation/pulverisation and agglomeration.

Zum Volltext

Überprüfung Ihres Anmeldestatus ...

Wenn Sie ein registrierter Benutzer sind, zeigen wir in Kürze den vollständigen Artikel.