The Future of ChatGPT in Medicinal Chemistry envisions AI-driven breakthroughs in drug discovery. Utilizing advanced language models like ChatGPT, accelerates screening and optimization of chemical compounds, predicting their interactions and pro...
Artikel
Encapsulating Sb/MoS2 Into Carbon Nanofibers Via Electrospinning Towards Enhanced Sodium Storage
Von Wiley-VCH zur Verfügung gestellt
High-capacity Sb and MoS2 were successfully encapsulated carbon nanofibers (Sb@MoS2@CNFs) via facile electrospinning and subsequent thermal treatment, which showed enhanced sodium storage capacity, superior cycling stability and rate capability. The integration of the Sb/MoS2 with CNFs ensured good Na+ ions diffusion, enhanced ion/electron transport, and buffered the volume expansion, leading to the excellent sodium storage performance.
Abstract
Metallic antimony (Sb) and molybdenum disulfide (MoS2) are identified as promising anode materials for sodium ion batteries (SIBs) owing to their high theoretical capacities. Herein, both Sb and MoS2 are integrated and fully embedded into carbon nanofibers (CNFs) to form Sb/MoS2@CNFs nanocomposite via an electrospinning technique followed by heat treatment. When employed as anode material for SIBs, the Sb/MoS2@CNFs electrode presents a reversible capacity of 282.7 mAh g−1 after 300 cycles at 1 A g−1, and even 197.5 mAh g−1 after 1350 cycles at a high current density of 5 A g−1. The superior sodium storage performance of the Sb/MoS2@CNFs can be ascribed to the synergistic effect of the integrated Sb/MoS2 components and their full encapsulation into the one-dimensional (1D) conductive carbon nanofibers. The well-dispersed Sb/MoS2 nanoparticles ensure good Na+ ions accessibility and high storage capacity, while 1D nanostructure facilitates ion/electron transport, tolerates the volume expansion, and prevents the Sb/MoS2 nanoparticles from aggregating during cycling. This work provides a simple and efficient synthetic route of multicomponent anode materials in advanced SIBs.
Zum VolltextÜberprüfung Ihres Anmeldestatus ...
Wenn Sie ein registrierter Benutzer sind, zeigen wir in Kürze den vollständigen Artikel.