This study pioneers the use of propylene carbonate (PC) as a green solvent alternative to N-methyl-2-pyrrolidone (NMP) for Li-ion battery cathode manufacturing, addressing a critical gap in sustainable electrode fabrication. The results demonstra...
Artikel
Electrochemical Transformation of Copper Sulfide Electrodes for Selective CO2‐to‐Formate Conversion
Von Wiley-VCH zur Verfügung gestellt
Electrochemical activation of Cu2−x S triggers sulfur leaching and the formation of amorphous, Cu-rich structures that enhance selectivity toward formate. This strategy doubles the Faradaic efficiency up to 75% for CO2 conversion, offering a scalable pathway for sustainable catalyst design.
Precise control over the dynamic transformations that electrocatalysts undergo under operating conditions offers a powerful strategy for tailoring catalytic selectivity. Herein, the electrochemical modification of Cu2−x S-derived catalysts to generate selective active sites for the electroreduction of CO2 to formate is investigated. Through a combination of in situ and ex situ characterization techniques, it is demonstrated that electrochemical cycling induces sulfur leaching, resulting in the formation of reduced, amorphous copper structures that exhibit enhanced selectivity toward formate production. Compared to the pristine material, the electrochemically modified catalyst achieves a twofold improvement in Faradaic efficiency, reaching values as high as 75% for CO2-to-formate conversion. These findings not only establish a cost-effective and scalable platform for catalyst fabrication and activation, but also open new avenues for advancing sustainable CO2 conversion technologies toward industrial implementation.
Zum VolltextÜberprüfung Ihres Anmeldestatus ...
Wenn Sie ein registrierter Benutzer sind, zeigen wir in Kürze den vollständigen Artikel.