The urchin-like Ni1/TiO2- x catalyst with atomically dispersed Ni and Ov dual sites enables efficient urea synthesis by synergistically activating N2 and CO2. The Ni sites facilit...
Artikel
Doping Bulky Fluorinated Organic Anion to Construct Highly Efficient Anion‐π+ Type Photosensitizers for Cancer Phototheranostics
Von Wiley-VCH zur Verfügung gestellt
A facile strategy to enhance the fluorescence intensity and to modulate cellular uptake of anion-π+ AIE PSs by doping bulky fluorinated anions tetrakis(pentafluorophenyl)borate (FTB) into nanoparticles was proposed. The optimized DF-FTB8 (FTB:DPBCF-Br = 8:1) exhibited superior cellular uptake, outstanding imaging capabilities and high intracellular reactive oxygen species generation level, enabling efficient cancer photodynamic therapy.
Abstract
Anion-π+ type photosensitizers with aggregation-induced emission (AIE) feature have demonstrated promising potential in photodynamic therapy (PDT) against cancer. However, previous reports mainly focused on modifying the π+ core but often overlooked the crucial role of anions. Herein, we present a facile strategy to modulate the fluorescence intensity and cellular uptake of anion-π+ type AIE photosensitizers by doping bulky fluorinated organic anions into nanoparticles (NPs). Anion-π+ type AIE photosensitizer DPBCF-Br with different ratios of bulky anions (TB or FTB) were encapsulated into DSPE-PEG2000 to obtain NPs (named DF-TB X or DF-FTB X , X denotes the molar ratios of TB or FTB to DPBCF-Br). Expectedly, as the doping molar ratios increased, a progressive enhancement in fluorescence intensity of the obtained NPs was observed. This can be ascribed to the steric effect of bulky organic anions and the formation of a hydrophobic environment within the NPs. Interestingly, the optimal cellular uptake was achieved at X = 8 in DF-TB8 and DF-FTB8, resulting from the balance between lipophilicity and electronegativity. Ultimately, DF-FTB8 demonstrated outstanding cellular imaging capabilities and high intracellular reactive oxygen species generation, achieving efficient cancer phototheranostics. This facile bulky anion doping strategy will pave a new way for the construction of robust anion-π+ type photosensitizers.
Zum VolltextÜberprüfung Ihres Anmeldestatus ...
Wenn Sie ein registrierter Benutzer sind, zeigen wir in Kürze den vollständigen Artikel.