Colloidal motors with multimode propulsion have attracted considerable attention because of enhanced transportability. It is a great challenge to fabricate colloidal motors powered by a single engine for multimode synergistic propulsion. Herein, w...
Artikel
Construction of Co4 Atomic Clusters to Enable Fe‐N4 Motifs with Highly Active and Durable Oxygen Reduction Performance
Von Wiley-VCH zur Verfügung gestellt
Fe-N-C catalysts with single-atom Fe-N4 configurations are highly needed owing to the high activity for oxygen reduction reaction (ORR). However, the limited intrinsic activity and dissatisfactory durability have significantly restrained the practical application of proton-exchange membrane fuel cells (PEMFCs). Here, we demonstrate that constructing adjacent metal atomic clusters (ACs) is effective in boosting the ORR performance and stability of Fe-N4 catalysts. The integration of Fe-N4 configurations with highly uniform Co4 ACs on the N-doped carbon substrate (Co4@/Fe1@NC) is realized through a “pre-constrained” strategy using Co4 molecular clusters and Fe(acac)3 implanted carbon precursors. The as-developed Co4@/Fe1@NC catalyst exhibits excellent ORR activity with a half-wave potential (E1/2) of 0.835 V vs. RHE in acidic media and a high peak power density of 840 mW cm−2 in a H2-O2 fuel cell test. First-principles calculations further clarify the ORR catalytic mechanism on the identified Fe-N4 that modified with Co4 ACs. This work provides a viable strategy for precisely establishing atomically dispersed polymetallic centers catalysts for efficient energy-related catalysis.
Zum VolltextÜberprüfung Ihres Anmeldestatus ...
Wenn Sie ein registrierter Benutzer sind, zeigen wir in Kürze den vollständigen Artikel.