In this paper, the recent advancements in the electroreduction of CO2 to generate formic acid/formate over the last 5 years are reviewed with a focus on catalyst stability. The performance of common catalysts is also outlined and analy...
Artikel
Cold Sintering Enables the Reprocessing of LLZO‐Based Composites
Von Wiley-VCH zur Verfügung gestellt
Cold sintering enables direct reprocessing of composite electrolytes and provides a needed approach for promoting sustainability of energy storage devices. The low sintering temperature allows co-sintering of ceramics, polymers and lithium salts, leading to re-densification of the composite structures with reprocessing. All-solid-state lithium batteries fabricated with reprocessed electrolytes exhibit a high discharge capacity and good cycling stability.
Abstract
All-solid-state batteries have the potential for enhanced safety and capacity over conventional lithium ion batteries, and are anticipated to dominate the energy storage industry. As such, strategies to enable recycling of the individual components are crucial to minimize waste and prevent health and environmental harm. Here, we use cold sintering to reprocess solid-state composite electrolytes, specifically Mg and Sr doped Li7La3Zr2O12 with polypropylene carbonate (PPC) and lithium perchlorate (LLZO−PPC−LiClO4). The low sintering temperature allows co-sintering of ceramics, polymers and lithium salts, leading to re-densification of the composite structures with reprocessing. Reprocessed LLZO−PPC−LiClO4 exhibits densified microstructures with ionic conductivities exceeding 10−4 S/cm at room temperature after 5 recycling cycles. All-solid-state lithium batteries fabricated with reprocessed electrolytes exhibit a high discharge capacity of 168 mA h g−1 at 0.1 C, and retention of performance at 0.2 C for over 100 cycles. Life cycle assessment (LCA) suggests that recycled electrolytes outperforms the pristine electrolyte process in all environmental impact categories, highlighting cold sintering as a promising technology for recycling electrolytes.
Zum VolltextÜberprüfung Ihres Anmeldestatus ...
Wenn Sie ein registrierter Benutzer sind, zeigen wir in Kürze den vollständigen Artikel.