The extensive applications of MXenes, a novel type of layered materials known for their favorable characteristics, have sparked significant interest. This research focuses on investigating the impact of surface functionalization on the behavior of...
Artikel
CO2 Hydrogenation to CH3OH on Metal‐Doped TiO2(110): Mechanisms, Strain Effect and a New Thermodynamic‐Kinetic Relation
Von Wiley-VCH zur Verfügung gestellt
Surface strain and linear thermodynamic-kinetic relation are interesting topics in catalysis. Development of low temperature methanol catalysts of high activity and selectivity is of particularly importance for conversion of CO2 to methanol. In the present paper CO2 hydrogenation to methanol on Znx@TiO2(110) (x = 0-2) was explored using density functional calculations and microkinetic simulations. The reaction mechanisms on the three model systems were determined and it is shown that Zn2@TiO2(110) is the most active. The most favorable pathway on Zn2@TiO2(110) is identified and CO2 + H to HCOO is found to be the rate-controlling step. It is demonstrated that there is a linear relation (named AEB relation) between the adsorption energies of the initial states and the barriers for the controlling step on the 18 systems studied. Calculations on strained surfaces show that the AEB relation exists within ±1% strain. Sr2@TiO2(110) and -1% strained CaZn and ZnCu doped TiO2(110) are potential good low temperature catalysts and deserve experimental testing.
Zum VolltextÜberprüfung Ihres Anmeldestatus ...
Wenn Sie ein registrierter Benutzer sind, zeigen wir in Kürze den vollständigen Artikel.