Gesellschaft Deutscher Chemiker
Keine Benachrichtigungen
Sie haben noch keine Lesezeichen
Abmelden

Artikel

Can Copper(I) and Silver(I) be Hydrogen Bond Acceptors?

Hydrogen bonding with metals has recently been shown to take place with gold(I) compound. With the help of gas-phase IR spectroscopy and computational chemistry, we show, that similar interactions should exist also with Silver and Copper, with equipped with suitably designed ligands.


Abstract

Gold(I) centers can form moderately strong (Au⋅⋅⋅H) hydrogen bonds with tertiary ammonium groups, as has been demonstrated in the 3AuCl+ (3+ =1-(tert-butyl)-3-phenyl-4-(2-((dimethylammonio)methyl)phenyl)-1,2,4-triazol-5-ylidene) complex. However, similar hydrogen bonding interactions with isoelectronic silver(I) or copper(I) centers are unknown. Herein, we first explored whether the Au⋅⋅⋅H bond originally observed in 3AuCl+ can be strengthened by replacing Cl with Br or I. Experimental gas-phase IR spectra in the ∼3000 cm−1 region showed only a small effect of the halogen on the Au⋅⋅⋅H bond. Next, we measured the spectra of 3AgCl+ , which exhibited significant differences compared to its 3AuX+ counterparts. The difference has been explained by DFT calculations which indicated that the Ag⋅⋅⋅H interaction is only marginal in this complex, and a Cl⋅⋅⋅H hydrogen bond is formed instead. Calculations predicted the same for the 3CuCl+ complex. However, we noticed that for Ag and Cu complexes with less flexible ligands, such as dimethyl(2-(dimethylammonio)phenyl)phosphine (L7H + ), the computations predict the presence of the respective Ag⋅⋅⋅H and Cu⋅⋅⋅H hydrogen bonds, with a strength similar to the Au⋅⋅⋅H bond in 3AuCl+ . We, therefore, propose possible complexes where the presence of (Ag/Cu)⋅⋅⋅H bonds could be experimentally verified to broaden our understanding of these unusual interactions.

Zum Volltext

Überprüfung Ihres Anmeldestatus ...

Wenn Sie ein registrierter Benutzer sind, zeigen wir in Kürze den vollständigen Artikel.