We report a microwave-assisted wet chemical method for doping Zn into SnTe thermoelectric materials to in-situ induce rich ZnTe nanoprecipitates, nanopores, a large number of grain boundaries and other multi-dimensional defects. While ensu...
Artikel
Boosting the Electrocatalytic Water Splitting Performance Using Hydrophilic Metal‐Organic Framework
Von Wiley-VCH zur Verfügung gestellt
The article explores the efficacy of a Pd/C@MOF-303-based electrode in improving hydrogen evolution reaction performance within an electrochemical cell. It explores the mechanism underlying this improvement.
Abstract
In this study, we employed a rapid and efficient microwave method to synthesize Metal-Organic Framework (MOF-303), which was subsequently embedded onto Palladium/Carbon (Pd/C) electrodes. The resulting hybrid material, Pd/C@MOF-303, was thoroughly characterized, and its performance in the Hydrogen Evolution Reaction (HER) was systematically investigated. The Pd/C@MOF-303 composite exhibited remarkable improvements in HER performance compared to the unmodified Pd/C electrode. At a benchmark current density of 10 mA cm−2, the overpotentials for Pd/C and Pd/C@MOF-303 were measured at 185 mV and 175 mV, respectively. This reduction in overpotential highlights the superior catalytic activity of the Pd/C@MOF-303 hybrid material in facilitating the HER. Furthermore, the Pd/C@MOF-303 electrode demonstrated enhanced HER activity, increased mass activity, and excellent charge transfer rates compared to its unmodified counterpart, Pd/C. The findings underscore the significance of the hydrophilic MOF-303 in tailoring the surface characteristics of electrocatalysts, thereby offering insights into the design principles for advanced materials with superior performance in electrochemical applications.
Zum VolltextÜberprüfung Ihres Anmeldestatus ...
Wenn Sie ein registrierter Benutzer sind, zeigen wir in Kürze den vollständigen Artikel.