Gesellschaft Deutscher Chemiker

Artikel

Bi–Zr‐Modulated CO2 Microenvironment Enables High‐Rate CO2 Electroreduction

ChemSusChem, September 2025, DOI. Login für Volltextzugriff.

Von Wiley-VCH zur Verfügung gestellt

Engineering the catalyst microenvironment via zirconium incorporation enables high-rate electrochemical carbon dioxide reduction reaction (CO2RR). Bi–Zr composites achieve −176 mA cm−2 current density and 88% formate selectivity. Spectroscopy and theoretical modeling demonstrate that interfacial Bi–Zr domains stabilize charge transfer and suppress local pH rise, overcoming mass transport limitations in flow-cell systems.


Engineering the local chemical environment is an emerging strategy to enhance the performance of electrochemical CO2 reduction reactions (CO2RR). Bismuth–zirconium composite catalysts (Bi–Zr–KB, where KB = Ketjen Black) are developed to leverage Zr incorporation to modulate the local CO2 microenvironment in an alkaline flow-cell system. Among the catalysts synthesized with various Bi/Zr ratios, the Bi–Zr–KB sample with a Bi/Zr ratio of 2 demonstrated the highest performance, achieving a current density of −176 mA cm−2 and a formate Faradaic efficiency of 88% at −0.6 V vs reversible hydrogen electrode; representing a 1.4-fold enhancement over the Bi-only catalyst. Material characterizations (X-ray photoelectron spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray absorption near edge structure) confirmed the reduction of Bi species to metallic Bi during electrolysis, while Zr remained chemically stable. Electrochemical impedance spectroscopy and in situ Raman spectroscopy revealed that Zr incorporation suppresses local pH rise (≈0.3 units lower), facilitating improved CO2 availability near active sites. Density functional theory calculations using Bi, Bi2O3, and ZrBi models showed interfacial Bi-Zr phases enable uniform CO2 adsorption and enhanced charge transfer across surface orientation. These findings highlight Zr role in modulating catalyst microenvironment to overcome CO2 mass transport limitations and achieve high-rate CO2 conversion to formate.

Zum Volltext

Überprüfung Ihres Anmeldestatus ...

Wenn Sie ein registrierter Benutzer sind, zeigen wir in Kürze den vollständigen Artikel.