Gesellschaft Deutscher Chemiker
Keine Benachrichtigungen
Sie haben noch keine Lesezeichen
Abmelden

Artikel

Development of Procaine Loaded Transdermal Patches Based on Biopolymer Pectin, Castor Oil, and Polyethylene Glycol for Controllable Drug Release Studies and Their Characterizations

Von Wiley-VCH zur Verfügung gestellt

Transdermal drug delivery is a new-generation drug delivery method. In this study, drug molecules are released through a biocompatible hydrogel patch with the help of pectin-based hydrogel structure, chemical penetration enhancers castor oil (CO), and polyethylene glycol (PEG). The hydrophilic structure of PEG and pectin hydrogel and the hydrogel‘s porosity structure are crucial elements for transdermal drug delivery. Franz diffusion cell experiments are carried out at 37 °C to examine drug delivery through a synthetic membrane which is aimed to mimic the skin. Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) are used to characterize the patches′ chemical structure and thermal properties. The patches are evaluated by the contact angle measurement and the swelling test. Results from the Franz diffusion cells show that the most promising results come from C10-P5-PC (12.7 mg drug/g film) and C30-P5-PC (11.4 mg drug/g film) which can be attributed to the synergetic and optimum amount of PEG and CO.


Abstract

Transdermal drug delivery systems have considerable attention in clinical and point-of-care applications due to their superior advantages such as non-invasive properties and keeping drug efficiency. To overcome the skin barrier, penetration enhancers are employed in the patch design. Chemical penetration enhancers are the most frequently applied way to improve drug diffusion through the barrier. Transdermal patches are designed as a drug-loaded thin-film hydrogel. Since the patch material must be biocompatible and eco-friendly, in this study, pectin-based transdermal patches are designed, and procaine, a painkiller drug is chosen as a model drug. Benzyl alcohol, polyethylene glycol, and castor oil are selected as chemical penetration enhancers. Drug diffusion experiments are carried out by using Franz diffusion cells at 37 °C. Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) are used to characterize the chemical structure and thermal properties of the patches. The patches are evaluated by the contact angle measurement and the swelling test in terms of their hydrophilicity and water uptake. Regarding in vitro drug release experiments by Franz diffusion cells, drug-loaded patches were examined (CxPy-PC; C-castor oil, P-PEG, x-y amounts (mg)). It is found that the most promising results come from C10-P5-PC (12.7 mg drug/g film) and C30-P5-PC (11.4 mg drug/ g film) which can be attributed to the synergetic and optimum amount of polyethylene glycol and castor oil.

Zum Volltext

Überprüfung Ihres Anmeldestatus ...

Wenn Sie ein registrierter Benutzer sind, zeigen wir in Kürze den vollständigen Artikel.