Gesellschaft Deutscher Chemiker
Keine Benachrichtigungen
Sie haben noch keine Lesezeichen
Abmelden

Artikel

Boosting Magnesium Ion Storage Behavior via Heteroelement Doping in a Porous Tunnel Framework Cathode for Aqueous Mg‐Ion Batteries

Von Wiley-VCH zur Verfügung gestellt

Nb, V-doped K-OMS-2 was prepared through a facile constant temperature reflux method. The enlarged specific capacity and stabilized tunnel structure realized an improved electrochemical performance.


Abstract

To relieve the overwhelming pressure on fossil energy, aqueous magnesium ion batteries attracted tremendous attention owing to their low cost and high safety. However, the cathode materials are apt to occur lattice distortion because of the electrostatic interaction between magnesium ions and crystal. The 2×2 manganese octahedral molecular sieve with potassium ions and water located in the tunnels (K-OMS-2), utilized as a cathode material for chargeable magnesium ions batteries, is exposed to irreversible Mg2+ intercalation/deintercalation due to lattice distortion, which heavily damages the electrochemical properties and declines the capacity. Herein, we carry out an ion doping strategy to overcome the above issues, leading to an enhanced Mg Mg2+ storage behavior. The Nb or V cation is successfully doped into K-OMS-2 by a facile reflux method under room temperature. The specific surface area is enlarged by the addition of cations, which promise a large electrode-electrolyte contact area. The Nb and V doped K-OMS-2 present a capacity of 252.6 and 265.9 mAh/g at 20 mA/g, respectively. This work demonstrates an ion doping approach toward exploiting the stable and high-capacity Mg-ion battery cathode and provides potential cathode materials for a large-scale aqueous Mg-ion-based energy storage system.

Zum Volltext

Überprüfung Ihres Anmeldestatus ...

Wenn Sie ein registrierter Benutzer sind, zeigen wir in Kürze den vollständigen Artikel.